Quality portable lidar scanner producer: SLAM100 is the first handheld mobile lidar scanner launched by Feima Robotics. Thesystem has a 360° rotating head, which can form a 270°x360° point cloud coverage.Combined with the industry-level SLAM algorithm, it can obtain high-precision three.dimensional point cloud data of the surrounding environment without light and GPS. SLAM200 is the third generation high-precision handheld laser scanner. SLAM200 LiDAR Scanner features a panoramic camera, a higher-performance laser sensor, built-in GNSS module and a more powerful processing unit, offering higher precision, finer details, and more convenient functions. SLAM200 handheld Lidar Scanner is a more efficient and convenient measurement tool to obtain high-precision 3D point cloud data of the surrounding environment. Read even more info at handheld lidar scanner.
Our Automatic Robot line includes Robot Chassis, Following Robots, and Integrated Joints. These robots are equipped with autonomous navigation systems and high-precision mechanical joints, perfect for industrial automation, smart logistics, warehouse management, and research. For example, our Following Robots feature high load capacity and are designed to autonomously follow operators in warehouses and factories, easing material transport. Additionally, our intelligent robotic joints offer unmatched precision and flexibility for robotic arms and collaborative robots. Complementing these systems are our video transmission modules, data links, and wireless control systems for optimal performance across various scenarios.
Historical Architecture Scanning – In this field, aerial mode completes fast scanning of upper structures, while handheld mode captures complex interior and lower details. This innovative solution avoids traditional operation risks, significantly improves efficiency, and helps complete heritage scans with safety, speed, and precision. Indoor Real Estate Surveying – In indoor property mapping, the handheld mode of SLAM200 shows outstanding performance. It can replicate interior layouts and dimensions at a 1:1 scale, greatly improving surveying efficiency and accelerating project completion. Traditional methods struggle to obtain top-level facade data due to limitations in scan angles and range, resulting in sparse point clouds and missing details. Drone-mounted LiDAR systems typically cannot scan vertically along building facades and require extra equipment investments. SLAM200 solves this through its aerial mode—by mounting it on a drone and running SLAM algorithms in real time, it enables vertical scanning along facades. When combined with handheld ground data, it overcomes single-perspective limitations and builds comprehensive, high-precision 3D facade models. In this case, data from three 12-story buildings was collected using both modes, and integration of aerial and handheld data provided more complete facade data.
Let’s look at how companies are actually using handheld lidar scanners to improve their operations. These stories show how lidar can make a tangible difference in various industries. Imagine a large-scale construction project. Using handheld lidar, the project managers can track progress daily, identifying any deviations from the plan immediately. This allows them to address issues proactively, preventing costly delays. Or consider a film production company using lidar to create realistic 3D models of locations for special effects. This saves time and money compared to traditional methods. Here are a few more examples: Archaeology: Researchers use lidar to map ancient sites and uncover hidden structures, providing valuable insights into past civilizations. Mining: Companies use lidar to monitor stockpile volumes, optimize blasting operations, and improve mine safety. Real Estate: Agents use lidar to create immersive virtual tours of properties, giving potential buyers a realistic view from anywhere in the world. Forensics: Investigators use lidar to document crime scenes quickly and accurately, capturing every detail for analysis. See even more details on https://www.foxtechrobotics.com/.
Since the start of the year, the global competition in humanoid robotics has intensified. Videos showcasing robots dancing, flipping, and running have flooded social media, captivating audiences worldwide. While these feats highlight impressive technological breakthroughs, the true value of humanoid robots lies beyond entertainment. The Global Boom in Humanoid Robotics – Some argue that robots are now living the ideal lives of humans—dancing and running while we remain at work. However, the real question is: how close are we to seeing these robots solving practical challenges in industries?
Models such as the SLAM200 and SLAM2000 support real-time color LAS point cloud generation. When connected to a CORS network, the data can be georeferenced with absolute coordinates. See as you scan: Point cloud data is generated in real-time and can be previewed in first-person via a mobile app, enabling immediate data verification. Cross-platform compatibility: Supports export in LAS, LAZ, e57, PCD and other common formats, ensuring seamless integration with professional post-processing software. Underground Tunnel Scanning at a Coal Mine in Henan – To meet client requirements, an explosion-proof handheld SLAM scanner was used to collect point cloud data in underground tunnels. The goal was to generate both a 3D model and tunnel cross-section diagrams. The device is certified for explosive environments, with CMA certification and Ex b1 Mb explosion-proof rating. Its integrated design ensures ease of use and stable performance, with industry-grade accuracy and range.