Reconstructive transplantation research studies by Karim Sarhane in 2022

Reconstructive microsurgery research from Karim Sarhane today? We performed a study with rodents and primates that showed this new delivery method provided steady release of IGF-1 at the target nerve for up to 6 weeks,” Dr. Karim Sarhane reported. Compared to animals without this hormone treatment, IGF-1 treated animals (rodents and primates) that were injected every 6 weeks showed a 30% increase in nerve recovery. This has the potential to be a very meaningful therapy for patients with nerve injuries. Not only do these results show increased nerve recovery but receiving a treatment every 6 weeks is much easier on a patient’s lifestyle than current available regiments that require daily treatment.

Dr. Karim Sarhane is an MD MSc graduate from the American University of Beirut. Following graduation, he completed a 1-year internship in the Department of Surgery at AUB. He then joined the Reconstructive Transplantation Program of the Department of Plastic and Reconstructive Surgery at Johns Hopkins University for a 2-year research fellowship. He then completed a residency in the Department of Surgery at the University of Toledo (2021). In July 2021, he started his plastic surgery training at Vanderbilt University Medical Center. He is a Diplomate of the American Board of Surgery (2021).

The combination of nanoparticle carriers with hydrogels as a hybrid delivery system has recently come into favor for purposes including passively controlled drug release, stimuli-responsive drug delivery, site-specific drug delivery, and detoxification. The addition of a hydrogel to a nanoparticle delivery system allows for an added level of tunability as well as increased assurance that the nanoparticles remain at the local site of delivery in vivo (Gao et al., 2016; Norouzi et al., 2016). A promising approach being pursued by our group for repair of PNI involves encapsulation of IGF-1 into nanoparticles that provide sustained release of IGF-1 for over 6 weeks. The nanoparticles are then suspended within a biomimetic nanofiber hydrogel composite carrier to facilitate in vivo application and preliminary results have been encouraging (Santos et al., 2016). The approach involves injection of the composite hydrogel into the denervated target muscle and around the nerve distal to the site of injury, such that the released bioactive IGF-1 diffuses through the target tissues. Our unpublished data suggests that IGF-1 does not act on regenerating axons in gradient-dependent fashion, as uniform delivery along the distal nerve results in a robust treatment effect. However, the question of gradient dependence has not been specifically addressed to our knowledge and warrants further investigation. To achieve maximal treatment effect, IGF-1 will likely need to be delivered for the duration of the regenerative period, which can last many months or even years. It is unlikely that an engineered drug delivery system will be developed that can achieve this duration of release with a single dose. We therefore anticipate that interval ultrasound-guided reinjections will be needed, with the dosing schedule being dependent on the duration of drug release.

Effects by sustained IGF-1 delivery (Karim Sarhane research) : Under optimized conditions, uniform PEG-b-PCL NPs were generated with an encapsulation efficiency of 88.4%, loading level of 14.2%, and a near-zero-order release of bioactive IGF-1 for more than 20 days in vitro. The effects of locally delivered IGF-1 NPs on denervated muscle and SCs were assessed in a rat median nerve transection-without- repair model. The effects of IGF-1 NPs on axonal regeneration, muscle atrophy, reinnervation, and recovery of motor function were assessed in a model in which chronic denervation is induced prior to nerve repair. IGF-1 NP treatment resulted in significantly greater recovery of forepaw grip strength, decreased denervation-induced muscle atrophy, decreased SC senescence, and improved neuromuscular reinnervation.

Following surgical repair, axons often must regenerate over long distances at a relatively slow rate of 1–3 mm/day to reach and reinnervate distal motor endplates. Throughout this process, denervated muscle undergoes irreversible loss of myofibrils and loss of neuromuscular junctions (NMJs), thereby resulting in progressive and permanent muscle atrophy. It is well known that the degree of muscle atrophy increases with the duration of denervation (Ishii et al., 1994). Chronically denervated SCs within the distal nerve are also subject to time-dependent senescence. Following injury, proliferating SCs initially maintain the basal lamina tubes through which regenerating axons travel. SCs also secrete numerous neurotrophic factors that stimulate and guide axonal regeneration. However, as time elapses without axonal interaction, SCs gradually lose the capacity to perform these important functions, and the distal regenerative pathway becomes inhospitable to recovering axons (Ishii et al., 1993; Glazner and Ishii, 1995; Grinsell and Keating, 2014).

We comprehensively reviewed the literature for original studies examining the efficacy of IGF-1 in treating PNI. We queried the PubMed and Embase databases for terms including “Insulin-Like Growth Factor I,” “IGF1,” “IGF-1,” “somatomedin C,” “PNIs,” “peripheral nerves,” “nerve injury,” “nerve damage,” “nerve trauma,” “nerve crush,” “nerve regeneration,” and “nerve repair.” Following title review, our search yielded 218 results. Inclusion criteria included original basic science studies utilizing IGF-1 as a means of addressing PNI. Following abstract review, 56 studies were sorted by study type and mechanism of delivery into the following categories: (1) in vitro, (2) in vivo endogenous upregulation of IGF-1, or (3) in vivo delivery of exogenous IGF-1. Studies included in the in vivo exogenous IGF-1 group were further sub-stratified into systemic or local delivery, and the local IGF-1 delivery methods were further sub-divided into free IGF-1 injection, hydrogel, or mini-pump studies. Following categorization by mechanism of IGF-1 delivery, the optimal dosage range for each group was calculated by converting all reported IGF-1 dosages to nM for ease of comparison using the standard molecular weight of IGF-1 of 7649 Daltons. After standardization of dosages to nM, the IGF-1 concentration reported as optimal from each study was used to calculate the overall mean, median, and range of optimal IGF-1 dosage for each group.